Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations.
نویسندگان
چکیده
Explicit integrators for real-time propagation of time-dependent Kohn-Sham equations are compared regarding their suitability for performing large-scale simulations. Four algorithms are implemented and assessed for both stability and accuracy within a plane-wave pseudopotential framework, employing the adiabatic approximation to the exchange-correlation functional. Simulation results for a single sodium atom and a sodium atom embedded in bulk magnesium oxide are discussed. While the first-order Euler scheme and the second-order finite-difference scheme are unstable, the fourth-order Runge-Kutta scheme is found to be conditionally stable and accurate within this framework. Excellent parallel scalability of the algorithm up to more than a thousand processors is demonstrated for a system containing hundreds of electrons, evidencing the suitability for large-scale simulations based on real-time propagation of time-dependent Kohn-Sham equations.
منابع مشابه
Embedding methods for large-scale surface calculations
One of the goals in the development of large scale electronic structure methods is to perform calculations explicitly for a localised region of a system, while still taking into account the rest of the system outside of this region. An example of this in surface physics would be to embed an adsorbate and a few surface atoms into an extended substrate, hence considerably reducing computational c...
متن کاملQuasiparticle Calculations for Point Defects on Semiconductor Surfaces
We discuss the implementation of quasiparticle calculations for point defects on semiconductor surfaces and, as a specific example, present an ab initio study of the electronic structure of the As vacancy in the +1 charge state on the GaAs(110) surface. The structural properties are calculated with the plane-wave pseudopotential method, and the quasiparticle energies are obtained from Hedin’s G...
متن کاملAccurate atomistic first-principles calculations of electronic stopping
We show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative...
متن کاملA real-space pseudopotential method for computing the electronic properties of periodic systems
We present a real space method for electronic structure calculations of periodic systems. Our method is based on self-consistent solution of the Kohn-Sham equations on a uniform threedimensional grid. A higher-order finite difference method is combined with ab initio pseudopotentials. The kinetic energy operator, the non-local term of the ionic pseudopotential and the Hartree and exchange-corre...
متن کاملTurbo charging time-dependent density-functional theory with Lanczos chains.
We introduce a new implementation of time-dependent density-functional theory which allows the entire spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 22 شماره
صفحات -
تاریخ انتشار 2012